11- an international roadmap
Existing Pilot plants in operation or under development:

Synfuel: Board Energy Corp. (Vancouver): 5 109 $ at walls hill (OHIO)
 Power: 50 000 b/day

Rentech Inc (Los Angeles), Plant Natchez (Mississippi):
 30 000 b/day starting 2011

Methanol: Mitsui Che: mitsui ceramic inc 1.5 109 yen

Methanol to olefin (USA - China): 1.6 109 T/Year to 60 000 T/Year of
 C2H4, C3H6

Synfuel: to Fisher Tropsch (gasification of coal and waste (South Africa, US))

Syngas from high power arc plasma: 10 to 20 megawatt (Russia, Tech Rep, CEA)
in an Huaneng Group: China biggest electricity provider: scale up its
 Shidongkou n°2 to capture existing coal plant in Shanghai: 3000 T/Y

Shanhua Group: China biggest coal producer: IGCC process for coal to liquid
 1 million ton of diesel per year in Mongolia
GreenGen: an integrated gasification combined cycle (IGCC) in China

- IGCC plant was approved by the Chinese government last June 2009
- Construction in Tianjin
- IGCC turns coal into gas which allows easy separation of CO2 from combustible gases
- This project is the leading carbon capture for coal fired power

- Science 25 sept 2009 VOL 325 p 1646
This opportunity needs a value chain

Petroleum Value Chain:
- Exploration
- Production
- Transport
- Refining
- Blending

CO₂/CH₄ Value Chain:
- Recycle
- Collection
- Transport
- Electrolysis/Methanation
- CH₄ for power

- No hurdles
- Infrastructure
- Scale
- Stack recovery
- Transport cost
- Vessel compatibility
- Storage
- Electrode system
- Catalyst system
- Heat provision
- Oxygen management
- Water management
- No hurdles
Figure 1. Possible route of production and usage of methanol.

B. Eliasson, F. G. Simon, and W. Egli
Asea Brown Boveri
Corporate Research Center
Baden, Switzerland
Raw material and energy storage

- **Electrical power**
- **Carbon source**
 - CO2
- **Active chemical species**
 - H2
- **Energy balance kWh low cost/kWh upper cost**
 - CO2 30% to 70%
 - CO2 = 0%
 - CO2 # 30 to 50%
 - CO2 # 30 to 70%
 - CO2 30% To 70%

- **Processes**
 - Electrolysis of sea water
 - Non equilibrium thermal plasma process
 - CH3OH or CH4 Energy storage by catalysis
 - CO/H2
 - CO/H2
 - CO/H2
 - CO

- **Processes**
 - Fisher Tropsch
 - Synthesis of hydrocarbon
 - Energy storage Heat capacity of the ceramic Hoven
 - Energy storage High speed of thermal transfer
 - CO-CH4

- **Economical aspects**
 - Three phase arc plasma 600 KW - 1000 KW
 - 1000 m³/h
 - Energy balance kWh low cost/kWh upper cost
 - Bitume sand added value
 - Tar valorisation by CO2 recycled
 - Coal treatment on fluidized Bed process
 - Added value by energy storage
 - Chemical synthesis
 - Oil production from waste (baril > 40 $)
 - Evaluation 500000 T on coal
Liquid CO₂

Sequestration
and new ciment for CO₂ storage
(0,6 T/T ciment)
(magnesium silicate)

Solvant properties

Cooling fluid

Chemical synthesis

- Area synthesis (fertilizant)
- HCOOH formic acid (HCOOH)
- H₂O₂ synthesis
- C₂H₅OH synthesis
- Polycarbonate polymer with insulating properties
- Copolymérisation epoxide + CO₂ → polycarbonate aliphatique biodégradable properties (30 to 50 % weight CO₂) and good mecanical properties
Liquid CO₂

Energy processes

Syngas production

CO₂ ⇄ CO

(CO + H₂)

Fisher Tropsch Process
for synfuel hydrocarbons

3

Coal gazeification
Waste or wood gaseification

(C + CO₂ ⇄ 2 CO)

1

Energy storage by Redox processes

CO₂ ⇄ CH₄

Electrosynthesis
(electrolysis H₂O → H₂)

CO₂ + H₂ → CH₄

Electrosynthesis
CO₂ + H₂ → CH₃OH

2

Plasmas processes
direct energy storage

CO₂ ⇄ CO