Carbon dioxide for coal gasification and waste treatment

Gasification permit to use pipes for coal transportation

° coal to Syngas: solid to gas
° Wood and biomass to syngas: solid to gas
° Fisher Tropsch: syngas to synfuel

• coal and Waste by plasma gasification process electricity to syngas and to synfuel
FISCHER-TROPSCH SYNTHESIS

Basic reactions in the F.T. synthesis

Paraffins formation

\[(2n + 1) \, H_2 + n \, CO = C_n \, H_{(2n + 2)} + n \, H_2O\]

Olefins formation

\[2 \, n \, H_2 + n \, CO = C_n \, H_{2n} + n \, H_2O\]

Alcohols formation

\[2 \, n \, H_2 + n \, CO = C_n \, H_{(2n + 1)} \, OH + (n - 1) \, H_2O\]

Other reactions may occur during the F.T. synthesis depending on catalyst conditions and working parameters of the reactor

Water gas shift

\[CO + H_2O = CO_2 + H_2\]

Bondouard disproportionation

\[2 \, CO = C + CO_2\]
• Most important aspects for F.T. reactors are

1 – High reaction heats

2 – Large number of products produced by varying vapor

3 – Temperature HTFT = 340°C pressure or LTFT 220-240°C

• Main reactors developed since 1950

1 – Slurry bubble-column reactors with internal cooling tubes

2 – Multi tubular fixed-bed reactors with internal cooling

3 – Circulating fluidized bed reactor with circulating solids, gas recycle, cooling in the gas/solid recirculation loop

4 – Fluidized bed reactors with internal cooling

Gaseification to fisher tropsch process: synfuel synthesis

For more detailed information, see: “Technology Intelligence for Coal-to-Liquids Strategies,” a 550-page report recently published by SRI Consulting (Menlo Park, Calif.; see box on p. 27).

Gerald Ondrey
Coal to liquid gaséification steps

FIGURE 1. In direct coal liquefaction, coal is pulverized and mixed with oil and hydrogen in a pressurized environment. This process converts the coal into synthetic crude oil that can then be refined into a variety of fuel products.

For more detailed information, see: “Technology Intelligence for Coal-to-Liquids Strategies,” a 550-page report recently published by SRI Consulting (Menlo Park, Calif; see box on p. 27).

Gerald Ondrey
CHEMICAL ENGINEERING WWW.CHE.COM JANUARY 2009 23
Fluent simulation of coal gaseification (DOE/NETL)

S. Shi, M. Shahan and M. Syamlal (Fluent Inc)
S.E. Zitney, W.A. Rogers (National Energy Technology Laboratory, Morgan Town)

Syngas Composition (mole%)
- CO: 39.2%
- H2: 23.7%
- H2O: 23.0%
- CO2: 10.3%
- CH4: 1.5%
- H2S: 0.7%
- Ar: 0.8%
- N2: 0.8%

Contours of temperature (left) and mole fraction of CO (right) on the center plane of the gasifier.
FLUENT SIMULATION OF COAL GASIFICATION (DOE/NETL)

S. Shi, M. Shaham and M. Syamlal (fluent Inc)
S. E. Zitney, W. A. Rogers (National Energy Technology Laboratory, Morgan Town)

Syngas Composition (mole%)

CO: 39.2%
H2: 23.7%
H2O: 23.0%
CO2: 10.3%
CH4: 1.5%
H2S: 0.7%
Ar: 0.8%
N2: 0.8%

FutureGen power plant with gasifier [2]

Syngas Composition (mole%)

CO: 30.3%
CO2 to synfuel: a new process

Producing Transportation Fuels with Less Work

Diane Hildebrandt, David Glasser, Brendon Hausberger, Bilal Patel, Benjamin J. Glasser

Coal, H₂O → Gasification → CO₂ + H₂ + CO₂ → Highly exothermic, Low T (500 K)
Less exothermic, Low T (500 K)

Fischer-Tropsch → CO₂ + H₂ → Highly endothermic, High T (1500 K)
Less endothermic, High T (1500 K)

Reducing the work. Improvements in efficiency of the Fischer-Tropsch process can be achieved with a carbon dioxide and hydrogen route, rather than the traditional carbon monoxide and hydrogen route. The processes shown would produce 80,000 barrels of liquid fuel per day and have a theoretical minimum work of 350 MW; the work (via heat) inputs for each stage and for the overall processes are shown as red and green arrows.

science, 323, 1680 (2009)
INNOVATION PROCESSES FOR FISHER TROPSCH SYNTHESIS

Capacity of the Process 80.000 barrel/day form coal (131.000 MWh)

△ Conventional route Fisher-Tropsch and M-T-O processes (methanol to olefins) Energy from network Theoretical minimum 350MW

3 C + 4 H₂O → 2 CO + 4 H₂ + CO₂ → 2 (- CH₂-) alcane + 2 H₂O + CO

1000 MW

△ Innovation route

3 C + 6 H₂O → 3 CO₂ + 6 H₂ → 2(-CH₂-) + 4 H₂O + CO₂

820 MW → 15 % reduction of CO₂ than the conventional route

→ 20 % less work to the gasifier

△ ⇒ if H₂ is produced via { nuclear wind solar

this process becomes a method for consuming CO₂ and may bypass the difficulties in the direct use of H₂ as a fuel

CHINA: Coal to liquid plant in Mongolia

- A new coal to liquid plant in Erdos
- Operate by Shenhua Group, the biggest coal producer in China
- Production of 1 million tons per year of diesel and petrochemical products
- Capture and storage 3.6 millions tons of CO2 in oil fields

- Science 25 sept 2009 vol 325 p 1646