preview all symposia

Nanoelectronic materials and devices


Materials for nanoelectronics and nanophotonics

This symposium will cover:

  1. Materials Synthesis: From 0D to 3D functional nanomaterials including hybrids.
  2. Properties: Electronics, optical, photonics, luminescent (experimental, analytical, modelling).
  3. Applications: Electronics, sensing, photonics, plasmonics, luminescent, optoelectronics, energy.


Nanostructures, particularly from inorganic materials, ceramics, carbon, etc. family, are very important candidates because of their extremely high surface-to-volume and morphology-dependent extraordinary properties suitable for many advanced technologies. The ongoing deployments in the direction of confined nanostructures (0D, 1D, 2D) and their porous interconnected 3D networked materials have further become very relevant towards various applications. The porous 3D network material built out of nanoscale building blocks, offers very lot of utilization simplicities and simultaneous easy accessibility of nanoscale features make them very excellent candidates for applications, especially towards electronics and optics. Due to their compact synthesis forms, they can be easily handled or integrated in the desired manner in nanoelectronics devices or sensors. The confined nanostructures from noble metals (Au, Ag, Cu, etc.) have found immense applications in electronics, optoelectronics, sensing, photonics, and waveguides, etc. Nanostructures from metal oxides have been very interesting (fundamental as well applied) materials due to interesting bandgap values (intermediate between metals and insulators), suitable for various advanced electronic, optical, optoelectronic and sensing technologies. When these metal oxides and metals are combined together in nanohybrids, they become further very relevant in terms of understanding the properties and accordingly electronics and optoelectronics applications. The carbon nanostructure family, i.e., fullerenes, carbon nanotubes, graphene, graphene oxide, etc., have shown very strong potentials in terms of fundamental properties as well as advanced electronics and optical applications and hence have been the subject of huge research attention in the last couple of decades. Recent developments in the direction of 3D carbon based networked materials have opened many new avenues in the direction of electronics and optics fields. The research on metal oxide nanostructures based three dimensional interconnected ceramics networks is currently in the main focus because they can be utilized as unique backbone for developing hybrid nanomaterials. The nanostructures from inorganic, metal oxide and carbon, etc. materials can be easily integrated in form of hybrid 3D networks which involves new structure dependent electronic and optical features for advanced nanoelectronics and nanophotonics related applications.

Appropriate growth strategies of different confined nanostructures using simple methods, understanding their different properties, and applications of these pure and hybrid materials in the direction of nanoelectronics and nanophotonics are key fundamental issues to which this proposed symposium in E-MRS Spring 2020 is going to briefly address. Researchers with interdisciplinary expertizes could easily help each other to realize the materials growth and corresponding structure-property relationships. In this proposal it is aimed to bring: (i) synthesis groups for developing different nanostructures, (ii) theoretical/modelling scientists, (iii) experts from electronics and photonics fields who can accordingly utilize these materials in various applications, together to develop a discussion platform with the theme ‘materials for nanoelectronics and nanophotonics’ at EMRS Spring meeting in 2020 in Strasbourg, France. Over the last few years, perovskites, rare earth based nanocrystals have gained significant attentions from electronics and photonics aspects. They have been intensively explored for light emission and photovoltaic applications. Recent developments towards synthesis, theoretical and applications of these advanced nanomaterials will also be covered in this symposium during E-MRS Spring 2022 in Strasbourg.

Topics to be covered by the symposium:

  • Hybrid materials: Synthesis, Characterizations, Structure-property relations, Analytical and simulation studies, Applications: Nanoelectronics, Sensing, Nanophotonics, Optics, Luminescent, etc.
  • Nanoelectronics: Electronics, Sensing, Energy, Photovoltaics, Piezoelectric, Piezotronics, etc.
  • Nanophotonics: Optics, Photonics, Plasmonics, THz optics, Luminescent, Waveguides, Whispering gallery modes, Light emitting diodes, Lasers, Imaging, Advanced lightening technologies, etc.
  • Nano optoelectronics: UV and photodetection, Photovoltaics, Solar cells, etc.

List of invited speakers:

  • Ioannis Papakonstantinou, University College London, UK
  • Gilles Ledoux, CNRS, France
  • Adel Mesbah, CNRS, France
  • Morten Willatzen, Chinese Academy of Sciences, China
  • Prashanth W. Menezes, Helmholtz Centrum Berlin, Germany
  • Satheesh Krishnamurthy, Open University, UK
  • Manish Tiwari, University College London, UK
  • Alireza Dolatshahi-Pirouz, DTU, Denmark
  • Amit Bhatnagar, LUT, Finland
  • Raghuraj Singh, JSI, Slovenia
  • Adarsh Pandey, Sunway University, Malaysia
  • Cenk Aktas, Kiel University, Germany
  • Sanjay Mathur, University of Cologne, Germany
  • Alberto Vomiero, Luleå University of Technology, Sweden
  • Sreetosh Goswami, Center for Nano Science and Engineering, Bangalore, India
  • Fabian Schütt, Kiel University, Germany
  • Samit K. Ray, IIT Kharagpur, India
  • Ivo Kuřitka, Thomas Bata University, Czech Republic
  • Pramod Kumar, QuantLase Lab, UAE
  • Karthik Shankar, University of Alberta, Canada

No abstract for this day

No abstract for this day

No abstract for this day

No abstract for this day

No abstract for this day

Symposium organizers

Tolosa Hiribidea, 76 - 20018 Donostia - San Sebastián, Spain

+34 943 57 4045
Graziella MALANDRINOUniversità degli Studi di Catania

Dipartimento Scienze Chimiche, Viale Andrea Doria 6, 95125 Catania, Italy

+39 095 7385055
Shashank MISHRAUniversité Claude Bernard Lyon 1, CNRS

IRCELYON-UMR 5256, 2 avenue Albert Einstein, 69626 Villeurbanne, France

+33 472 445 322
Yogendra MISHRA (Main organizer)University of Southern Denmark

Mads Clausen Institute, Alsion 2, 6400, Sønderborg, Denmark

+45 6550 7623