preview all symposia

Bio- and soft materials


Polymer and hybrid thin films deposited from the vapor phase for functional (bio-devices)

Polymers and organic materials are essential components of functional devices for applications in various technological areas. The possibility to tailor the material properties by molecular design make them attractive functional materials, especially for biological and medical applications. Their synthesis as thin films has significant advantages due to the reduced amount of supply used and faster processing times.


Polymer and organic materials are currently garnering more recognition in thin-film industry that historically has been dominated by inorganic films. Functional polymer thin films (< 100 nm) are typical components of modern devices in a variety of fields, including microelectronics, biotechnology and microfluidics. The need for miniaturization and structuration has boosted the development of advanced thin film growth techniques (e.g. iCVd, oCVD, PECVD, MLD) that can be easily implemented in the manufacturing steps of device production. As free-standing structures, two-dimensional thin films have advantages over bulk materials due to their large surface-to-volume ratios, desirable for applications requiring enhanced surface interactions. Thin films can also be employed as coatings over bulk materials to achieve application-specific properties that are unattainable in the substrate material.

Recent efforts are dedicated to conceive innovative deposition techniques that are versatile platforms for fabrication of a wide range of polymer thin films preserving all the desired chemical functionalities. The retention of the functional groups of polymers is critical to achieve the desired response. Not only, polymer thin films to be successfully integrated into functional devices require a combination of properties: chemical structure, micro- and/or nano- scale topography, porosity, durability, stiffness/elasticity, surface energy, etc. Each of these properties needs to be optimized for the specific application. The control of the film properties requires tuning of the thin film deposition parameters, which in return requires a thorough understanding of the underlying mechanisms of deposition.

The symposium will be dedicated to advanced functional polymer with particular highlights on the correlation between polymer properties and functionality. The focus will be on polymers synthetized by vapor phase deposition that provide ultrathin layers (<100 nm), conformal coverage, with low defect/impurity levels. Contributions on the applicability of polymer deposited from the vapor phase in the field of bio-devices are particularly encouraged.

Hot topics to be covered by the symposium:

Areas of particular interest will include, but not limited to, the following topics:

  • Functional Polymer Thin Films and their application in microfluidics, sensors, biomaterials, pharmaceuticals, healthcare, energy, etc.
  • Innovative Deposition Techniques, which retain the chemical functionality: initiated CVD, oxidative CVD, downstream/pulsed/low power plasma CVD, parylene deposition, Vapor Deposition Polymerization and Molecular Layer Deposition
  • Nanostructured Polymer and Hybrid Thin Films, including hierarchical structures, nanocomposites, multilayers.
  • Rational Design of Polymer Thin Film Properties to achieve the desired functionality, including engineering surface and interfaces properties.
  • Surface Modification/Functionalization approaches

No abstract for this day

No abstract for this day

No abstract for this day

No abstract for this day

No abstract for this day

Symposium organizers
Anna Maria COCLITEGraz University of Technology

Petersgasse 16 - 8010 Graz, Austria

+43 3168738970
Malancha GUPTAUniversity of South California

Meike KOENIGKarlsruhe Institute of Technology

Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany

+49 721 60822108
Nicolas BOSCHERLuxembourg Institute of Science and Technology (LIST)

41, rue du Brill, L-4422 Belvaux, Luxembourg

+352 275 888 578