preview all symposia

Nanomaterials

I

Group-IV semiconductor materials for nanoelectronics and cryogenic electronics

Group-IV semiconductors, namely Si, Ge, Sn and their compounds, are the most important materials in micro- and nanoelectronics but they will also play a key role in future quantum devices. This symposium aims to share the latest research in the field of group-IV nanoelectronic materials and devices.

Scope:

Silicon (Si) is one of the most dominant semiconductor materials with versatile applications ranging from electronics over photovoltaics to sensors and actuators. Due to its intrinsically higher electron and hole mobility germanium (Ge) or silicon-germanium (SiGe) are rapidly gaining interest in micro- and nanoelectronics. The same holds true for tin (Sn) and its alloys with the other group-IV semiconductors (e.g., GeSn).

In nowadays nanoelectronics research with device dimensions approaching the single-digit-nanometer scale nanowires are often the building blocks of transistors. However, many processing methods and device concepts have to be adopted since nanostructures are generically subject to nano-size and quantum effects. These effects involve for instance quantum confinement, dielectric confinement, detrimental surface states, statistical issues of doping ultrasmall volumes, etc. This bears the risk to deteriorate the performance and reliability or even cause complete failure of the transistors. On the other hand, if fully understood, nano-size and quantum effects may open up new vistas for increased performance, reduced power consumption or even routes towards quantum computing.

Generally, nanostructures have a high surface-to-volume ratio and their properties are often dominated by the surface. Therefore, an increased understanding of the physical and chemical properties of group-IV semiconductor nanostructure interfaces to metals and dielectrics is mandatory to control and optimize gate control, threshold voltage, ohmic contacts, carrier transport, etc.

Finally, simulations and modelling are crucial for nanoelectronics, starting from ab-initio methods to model physical/quantum-chemical properties of group-IV nanostructures to device simulations modelling transport and performance.

Hot topics to be covered by the symposium:

  • Group-IV semiconductors (Si, Ge, Sn) and their mixtures/alloys for nanoelectronics
  • Fabrication, functionalization, doping, defect engineering of group-IV semiconductor nanostructures
  • Advanced contacts and dielectrics for group-IV nanoelectronics
  • Emerging device concepts (gate-all-around GAA-FETs, junctionless JL-FETs, steep-subthreshold slope FETs, functionality enhanced FETs, etc.)
  • Characterization and metrology of group-IV nanostructures and nanoelectronic devices
  • Simulations and modelling of fundamental properties and devices
  • Integration of 2D-materials with group-IV semiconductor nanostructures
  • Group-IV semiconductor devices towards quantum computing (solid state spin qubits)
  • Cryogenic electronics
  • Sensing applications

No abstract for this day

No abstract for this day

No abstract for this day

No abstract for this day


Symposium organizers
Daniel HILLERTU Freiberg

Institute of Applied Physics (IAP), Leipziger Str. 23 - 09599 Freiberg, Germany

daniel.hiller@physik.tu-freiberg.de
Ray DUFFYTyndall National Institute / University College Cork

Lee Maltings, Dyke Parade - Cork T12 SRCP, Ireland

+353 21 234 6644
ray.duffy@tyndall.ie
Vihar GEORGIEVUniversity of Glasgow

School of Engineering, Rankine Building (307B), Glasgow G12 8LT, UK

Vihar.Georgiev@glasgow.ac.uk
Walter WEBERTU Wien

Institute of Solid State Electronics, Professorship of Nanoelectronics, Gußhausstraße 25-25a, A-1040 Wien, Austria

walter.weber@tuwien.ac.at