preview all symposia

Nanomaterials and advanced characterization

Q

Current trends in optical and X-ray metrology of advanced materials for nanoscale devices VI

Photonic probes are an essential tool to characterize novel materials, since they can be non-destructive and are sensitive to many of the critical characteristics of the materials.  This symposium will: i) explore the use of photons from terahertz to x-ray to characterize materials essential for many emerging technologies; ii)give an overview of the current status of optical and x-ray metrology for materials characterization and quality assurance of thin films, layer-structured materials, and one-dimensional nanomaterials, with a particular emphasis on state-of-the-art metrology; iii)promote and encourage the interaction between academic and industrial research to address scientific and technological challenges associated with the improvement of standard analytical methods and qualification of newer techniques with a particular emphasis for ICT, Microwave/Terahertz, Renewable Energy and Energy storage, health and heritage conservation; iv)promoting and encouraging young researches and academics interaction with industry to address scientific and technological challenges associated with the improvement of standard analytical methods and qualification of newer techniques suitable for addressing the needs for the emerging technologies of the future at nanoscale; v)foster networking activities within all these emerging fields of science and technologies that are expected to have a significant societal impact.

Scope:

This symposium will explore recent advances in photonic characterization of novel materials used in applications as varied as renewable energy, medical applications, and art restoration.  Visible photons are very easy to produce and manipulate, and have the proper energy to characterize semiconductor materials, such as might be found in solar cells.  Infrared and terahertz photons much lower energy and are harder to produce and manipulate, but give information about lattice vibrations and impurities in materials. X-rays are much higher energy, and therefore can explore material characteristics such as lattice spacing and atom identification.  This international symposium is intended to give an overview of the current status and future trends of optical, terahertz, infrared and x-ray metrology used to characterize nanoscale and other materials essential for many emerging technologies such as ICT, Microwave/Terahertz, Renewable Energy and Energy storage, health and heritage conservation.  Another emphasis of the symposium will be on the use of larger facilities, such as synchrotrons, which produce x-rays with characteristics beyond the capability of laboratory light sources.  An important consideration in this symposium will be on the actual characteristics measured, as well as the limits of the technique. In addition to the scientific objectives, we will promote and encourage the interaction between worldwide academics, National lab scientists and scientific instrument manufacturer to improve standard analytical methods and qualification of newer techniques suitable for addressing the needs for the emerging technologies of the future. A special networking event between Europe and Japan will be organised as part of this symposium.

Hot topics to be covered by the symposium:

  • Ellipsometric techniques (Mueller Matrix, Infrared, THz, time-resolved and in-situ)
  • X-ray diffuse scattering
  • THz spectroscopy
  • Spatially resolved optical and x-ray techniques at nanoscale.
  • Characterization of complex materials such as halide peroskites, graphene, graphene oxide, 2D semiconductor materials, nanotubes and nanowires, nanoporous materials and composites.
  • Emerging novel materials: Catalysts, Nanocarbons, 2D Materials, Thermoelectrics, β-Ga2O3,     e-Ga2O3,Perovskites, SiC;
  • Bio-related materials (Proteins, Cancer Cells, in-vivo and ex-vivo characterization)
  • Materials for New Mobility (Batteries, Supercapacitors, 5G/6G, Fuel cells, CFRPs)
  • Nanostructures, photonic crystals, and metamaterials; transparent conductive materials
  • Dielectrics and ceramics: low- and high-k materials; transparent semiconductors
  • Novel functional materials: Ferroelectrics, ferromagnetics and multiferroics
  • Emerging X-ray Techniques: Coherent imaging; Ultrafast timing fs (FEL)  
  • Novel imaging and mapping capabilities and high spatial resolution: Nanoscale Raman (TERS/ SERS), IR and Photoluminescence Spectroscopies
  • Ultrafast Spectroscopy/ Optical Pump-probe techniques
  • High Resolution Transmission Electron Microscopy

Publication:

Selectd papers will be published as a special issue in Physica Status Solidi a (pss-a), Wiley.

 

No abstract for this day

No abstract for this day

No abstract for this day

No abstract for this day

No abstract for this day


Symposium organizers
Gerald E. JELLISONMaterials Science and Technology Division - Oak Ridge National Laboratory

1 Bethel Valley Road Oak Ridge, TN 37831 USA

+865 576 7309
jellisongejr@ornl.gov
Mircea MODREANU (Main)Tyndall National Institute-University College Cork

Lee Maltings, Dyke Parade, Cork, Ireland

+353 21 4904267
mircea.modreanu@tyndall.ie
Olivier DURANDUniversité Européenne de Bretagne - FOTON-OHM - UMR-CNRS 6082

INSA de Rennes, 20, avenue des Buttes de Coësmes - CS 70 839, 35708 Rennes, France

+33 (0) 2 23 23 86 28
olivier.durand@insa-rennes.fr
Toshihiko KIWAOkayama University

3-1-1 Tsushima-naka, Kita-ku, Okayama, 700-8530 Japan

+ 81 (86) 251 8130
kiwa@okayama-u.ac.jp