- Portobet platformuna erişim sağlamak için güncel bağlantıları takip etmek son derece önemlidir. Özellikle yeni üyeler, sorunsuz kayıt ve hızlı para yatırma avantajlarından yararlanarak Portobet’in sunduğu güvenli bahis ortamının keyfini çıkarabilirler. Giriş sorunları yaşadığınızda, doğrudan resmi siteyi kullanmak hesap güvenliğiniz açısından en doğru tercihtir.
- Portobet giriş işlemlerinde en çok tercih edilen alternatif adreslerden biri olan porto-bet.net, kullanıcılarına sorunsuz erişim ve yüksek oranlı bahis imkânları sunuyor. Bahis severler, güncel Portobet giriş adresi üzerinden canlı maç izleme, özel bonus fırsatları ve kesintisiz ödeme çözümleriyle beklentilerinin ötesinde bir deneyim yaşayabilirler.
- Spor tutkunları için Portobet mobil uygulaması ile hem iOS hem de Android cihazlarınızdan, anında ve güvenli şekilde bahis oynamak mümkün. Mobil giriş sayesinde Portobet’in hızlı para çekme, güncel maç analizleri ve canlı destek avantajlarından, dilediğiniz her yerde kesintisiz yararlanabilirsiniz. Güncellenen uygulama ile erişim sorunları tamamen ortadan kalkar.
- CSV Viewer makes it easy to open, explore, and filter large CSV files directly in your browser. With its user-friendly interface and advanced data analysis tools, CSV Viewer helps you manage, visualize, and process spreadsheet data more efficiently for all your workflow needs.
- Base64 Encode offers a fast and secure way to convert any text or file to base64 format online. This tool streamlines data encoding for web projects, making data transmission, storage, and sharing more reliable, whether you’re a developer or just need a simple encoding solution.
Advanced characterization and computational design
SComputations for materials – discovery, design and the role of data
The integration of materials simulation, autonomous experiments, and data science is transforming modern materials design and discovery. This symposium brings together global leaders in data driven materials research (modelling and experiments) as well as artificial intelligence experts to present and discuss the latest achievements in the field.
Scope:
The large-scale deployment of first-principles electronic structure calculations, in combination with improvements of machine learning models and development of self-driving laboratories, is setting the stage for a new paradigm in modern materials science. The sequential discovery process where materials are in-silico discovered and afterward tested in a laboratory is now being replaced by an intertwined process where materials modelling and self-driving robotic experiments are tightly coupled via machine learning. This coupling enables discovery and testing of materials on the fly, reducing the discovery time and making materials search and selection more efficient. To truly realize the vision of accelerated materials discovery and optimization, new materials modelling techniques, machine learning models, and autonomous experimentation are needed. Further, these elements need to be connected via seamless data infrastructures. The main goal of this symposium is to gather leading scientists and engineers from academia, national labs and industry to discuss the status and the outlook for research and applications of computation and data-driven materials science, with an emphasis on the experimental validation and the integration of theory, computations, artificial intelligence, and experiment. The common challenges and opportunities will be at the focus of the discussions. The symposium will cover a wide range of studies including advancements in theory, computational methods (including high-throughput and AI, machine (deep) learning), the role of data in modern materials science, and materials synthesis and characterization for accelerated design and discovery.
Hot topics to be covered by the symposium:
- Materials Design and Discovery
- Data Infrastructure
- Materials Acceleration Platforms
- Energy Materials
- Modeling of interfaces
- Multiscale modelling
- Autonomous synthesis and characterization
- Structure predictions, Applications and Recent Advancements
- Data mining and Machine (deep) Learning
- The Rise of Experimental Databases
Documentation
No abstract for this day
No abstract for this day
No abstract for this day
No abstract for this day
No abstract for this day
1206 W Green St, Urbana IL 61801, USA
ertekin@illinois.eduDepartment of Energy Conversion and Storage, Fysikvej 309, DK-2800 Kgs. Lyngby, Denmark
ivca@dtu.dk1500 Illinois St., Golden, CO 80401, USA
vstevano@mines.edu