Plenary session

The plenary session is scheduled for Wednesday morning, 19th September and will consist of a series of outstanding talks:


1. Presentation of the Jan Czochralski Award to Professor Herbert Gleiter, The Research Centre Karlsruhe (INT), Germany

Lecture by Professor Herbert Gleiter

Nano-glasses: The Way to a World of New Materials with New Structures and Technological Applications

Today’s technologies are based primarily on utilizing crystalline materials such as metals, semiconductors or crystalline ceramics. The reason for this preference of crystalline materials is that  their properties can be varied by varying their chemical compositions (by alloying, doping) and/or by varying their microstructures by means of introducing microstructural defects such as inter-crystalline interfaces, dislocations and/or point defects. In the late 1970s the variation of the properties of crystalline materials by introducing a very high density of defects opened the way a new class of materials: nano-crystalline materials. This new approach was confirmed by the rapidly growing number of subsequent studies.  Today more than 800 papers are published in this area every year, several international conferences are organized annually and most (national as well as international) conferences in the area of Materials Science have one or several sessions on “nano-materials”.

The way to a new world of technologies based on non-crystalline materials may be opened by means of nano-glasses. Nano-glasses consist of nanometer-sized glassy regions connected by (nanometer-wide) interfacial regions with atomic and electronic structures that do not exist in melt-cooled glasses. If the size of the nanometer-sized glassy regions is 5 nm or less, the volume fraction of these interfacial regions is 50% or above.  Due to their new atomic/electronic structures, the properties of nano-glass differ from the corresponding properties of melt-cooled glasses. For example, FeSc nano-glasses were (at 300K) strong ferro-magnets although the corresponding melt-cooled glasses were paramagnetic. Similarly, the ductility, the biocompatibility, the catalytic properties of nano-glasses were improved by up to several orders of magnitude. Moreover, nano-glasses open the way to new kinds of alloys as they permit the alloying of components that are immiscible in crystalline materials. This applies to components with the same as well as different kinds of chemical bonds. Nanoglass alloys of Fe90Sc10 and Cu64Sc36 glasses are an example of two metallic components (Cu and Fe) that are immiscible in the crystalline state. Alloys of metallic Fe90Sc10 glasses and SiO2 glasses are nano-glass alloys of the second type.

Just like in the case of nano-crystalline materials, the properties of which may be changed by varying the sizes and/or chemical compositions of the crystallites, the properties of nano-glasses may be controlled by varying the sizes and/or chemical compositions of the glassy clusters. This analogy opens the  perspective that a new age of technologies - a ”glass age”- may be initiated  by utilizing the new properties of nano-glasses and modifying their properties by varying the sizes and/or chemical compositions of the glassy clusters.

H.Gleiter, Small 12, 2016  2225-2233


2. Lecture by Professor Veena Sahajwalla, Centre for Sustainable Materials Research & Technology (SMaRT@UNSW), Australia

"The Science of Microrecycling: Selective Synthesis of Materials from Waste"


3. Lecture by Professor Themis Prodromakis, Electronic Materials & Devices Research Group, Zepler Institute, UK

“Harnessing the power of the brain with metal-oxide nano-electronics”